Aegis

A Project Change Supervisor

Peter Miller

Australian Geological Suey Organisation

ABSTRACT

Many CASE systems attempt to provideegything, including bubble charts, source
control and compilers;ven if you dont like one of the tools, you are stuck with ifn
contrast,UNIX? utilities provide may components of a CASE system — compilers,
editors, dependeganaintenance tools (such amke), and source control tools (such as
RCS). You may substitute the tool of your choice if you ddif‘e the ones supplied with
the system.Aegis adds software configuration management to these toals. toUNIX
philosoply, Aegs does not dictate the choice ofyasf the other tools (although it may
stretch them to their limits).

1. Introduction examples of these problems include:
Aegis performs some of the tasks increasingly - bugs which refuse to die;
referred to as software configuration management . lost changes, from delopers “tripping

(SCM). Itsupervises the gelopment of changes

. . : over" each other;
to a project and the integration of those changes

back into the master source of the project. - not knowing who changed the source, or
why;

There are existing programs, such as RCS or -y .

CVS, which could do some of this taskhe + using the wrong ersions of the sources to

difference is that Aegis does not allehanges to build the project;

be unconditionally added to the master souite.
enforces a number of requirements, each designed
to ensure that the project does not "go baukls”
because of a change.

not having a working copto demonstrate
to anxious management, or anxious
customers.

i While Aeggis can help sokv these problems, and
The word aegis was chosen as the name becausemary others, it cannot sobvevery problem, it is

of its meaning: not a silver bullet.

aegis(ee.j.iz)n., a protection, a defence.

In Greek mythologythe god Zeus had a shield 2. Whatis SCM?

called Aegis, which provided a supernatural Software configuration management (SCM) is a
defence. Whilédegis does not claim supernatural large and increasingly complaliscipline. Itcan
powers, it does provide a way of managing be briefly described as consisting of a number of
changes to a soffwe project and a solution to parts, which include:

mary of the problems encountered when a team

of developers write softw@re. Somecommon Manifest Control

It is necessary to kmowhat all the source
files of a project are, and where yhean be

1. UNIX is a trademark of Bell Laboratories.

Aegis PeteMiller Page 1

found. Itis also necessary to kwowhen
they were added or remved.

Version Control
It is necessary to kmowhich version of each
source file is usedlt is necessary to be able
to recreate earlierersions of the project from
this information.

Build Control
It is necessary to kmohow to construct the
object of the project from the source files.

Change Control
It is necessary to kmowho performed each
change and when, who initiated each change
and wty.

Quality Control
It is necessary to kmothat the changes made
to your project meet your quality criteridt
is essential that changes do not "break" an
otherwise working project.

The last item on this list is frequently absent from
SCM systems, and is a major focus ofgisé
design.

2.1 Development Model The master
source of a project, and all the implications
flowing from it, such as object files and
executables, and all the tests, is callebdaseline,

to use common SCM terminology.

Aegis is designed to try to ensure that the baseline
always works, where "works" is defined as
passing all the tests in the baseline.

All file history tools include tw functions: you
can "check out" a file for editing, and you "check
in" the file when you are finished. The concept
may be generalized for sets of fileBhe problem
with using such a simple process is that the
“check in" is unconditional. Aegis breaks the
“check in" into seeral steps, so that inadequate or
defectve dterations to the baseline ararfless
likely.

In Aegis, the unit of change to the baseline is, un-
originally, called achange. Each change must be
atomic, it must lege te baseline in a erking
state, and must not depend ory ather change
being performed simultaneouslyror example,
when the intedce to a function is altered, the
change must also include alterations erg call

of that function.

Aegis tracks all the source files included in a
change, and sufficient history information for

Aegis

PeteMiller

each file so that when a change is finished, an
algorithm similar to that used in RCS-Merge or
CVS-Update may be empled to resole ay
problems caused by the ability to simultaneously
include the same source file inveml different
changes.

Developers may not directly edit the baseline.
The baseline is updated by a user called the
integrator, who integrates the baseline with the
change, and then validates the result, before
accepting it as the nebaseline.

3. ChangeControl

Change control in Agis is implemented as six
states which a change must pass througnious
criteria must be met to lea me state and
advance to the n¢. SeeFigure 1 for an werview
of the change states.

3.1 Awaiting Development Not all
members of the team may create changes. This is
controlled by an access list, and thus may be as
restricted or open as your project requir&nce

a dhange has been created, it is in #veiting
development state. A change consists of little
more than a description in this state.

3.2 Being Developed Not all members of
the team may delop changes. This is controlled
by an access list, and thus may be as open or
restricted as your project requires.

A variety of methods may be used to assign
changes to delopers, but at some point, either
from receving instructions to do so, or lwsing
and finding one, a deloper assigns a change to
herself. Oncea dhange is assigned to avéper,

a devdopment directory is created for it, and it
advances to thieeing devel oped state.

This state is the coahte. Projecsource files can

be edited in this state onlource files which are

to be edited are copied from the baseline into the
development directory Aegis is used to copthe
files, so that it knes which files are being
modified by this change. Files can also be created
or deleted by a changeégain, Aegis is used to
do this, so that it knes what is happeningYou
don't haveto issue tw commands this ay, one

to tell UNIX to do it, and another to tell Aés that
you have done it.

2. Only those files which are to be edited need to be
copied. Thebaseline acts as a cache for object files not
present in the delopment directory.

Page 2

new
change

awalting
development

develop
begin

being
developed

being
reviewed

review
pass

awalting
integration

integrate
begin

being
integrated

integrate
pass

completed

Figure I Change States and Transitions

Build Once you hee dited the source files, the
change must beuidt. Building is the process of
manipulating or translating the source files in
some vay to produce the object of the project.
For programs this usually means compiling the
source files and linking them into areeutable
program. Thebuild is performed via Agis, so
that it can look at thexd@ status and kna if the
build succeeded or notA successful build is a
requirement for leaving thieeing developed state
and advancing to the next.

Aegis

PeteMiller

There are no facilities in Aegis for describingsho
to build the project. Instead, Aegis dgdtes this
task to adependency maintenance tool (DMT).
This delgion is stored as &NIX command to
be performed when a build is requestddhere is
no provision for Aegis to understandny
dependencies, as these ar@pexted to be
described in the DMTE configuration file, itself a
source file of the project.

Typically a DMT is a program lik make(1),
however this old-faithful is not able to cope with
the demands placed upon it bygle® The major
problem is the tw-directory structure used: when
the DMT is looking for files, it must first search in
the deelopment directory and then in the
baseline. Itis best if the DMT can do this
transparently because it mads the rules much
easier to write.The cook program, also written
by the authgris a DMT known to work with
Aegis.

Test Each change must be accompanied by at
least one test.Except for the way tests are
created, so that Aegis knows yhare tests rather
than ordinary source files, theare treated
identically to source files: themay be modified
and een deleted by later changes, by the same
commands as used for non-test source files, and
they are subject to the same process.

Tests are Bourne shell script3hey are executed

via Aeggis so that it can examine the exit status,
and knev if each test has passed oailéd.
Having tests, and passing them, is a requirement
for leaving the being developed state and
advancing to the next.

As changes are integrated into the baseline, the
tests which accompgneach change accumulate
into a regression test suiteA devdoper may
optionally run all or part of this regression test
suite to mak aure that her change has not kenk
ary existing functionality Because this
regression test suite grows steadily is not
practical to run all of it forwery change; so Agis

is designed to makit relatively easy to run a
(hopefully representatg) subset.

Difference Once a change uilds and tests
successfullyit is differenced. This is the process
of creating files showing the difference between
the baseline and the \dopment directory for
each file in the change. This alls reviewers to

3. Even GNU Male 365 is not up to the task; the XPH
semantics are too limited.

Page 3

examine all the edits made by thevdeper, not

just the ones the can find. The dference
command is configurable, as appropriate for each
project.

Conflicts This difference stage is also where
problems with out-of-date files are resadv If
two devdopers cog the same revision of the
same file into tw different changes, one of them
will be integrated into the baseline before the
other hence the possibility of one or more files
being out-of-date.A three-vay merge between
the common ancestahe file in the deelopment
directory and the current file in the baseline, is
performed® This produces a merge of theaw
competing edits, which the dgoper should then
examine to ma& ure the automatic merge has
produced sensible result$his merge tool is also
configurable, as appropriate for each projédie
out-of-date file is then marked as up-to-date, and
the change will require anotheuild and test, to
ensure that the merge has not broken anything.

3.3 BeingReviewed Once the files are up-
to-date, hilt and tested, the weloper may
adwance the change to thming reviewed state.

At this point, all the source files in the change are
locked, preenting ary other changes with files in
common from advancing to thieeing reviewed
state. Ifary change file is already locked, the
developer will be told to try again later.

The style of reiew is not dictated by Agis. The
only requirement is that an authorised user tell
Aegis that the rdew passed or diled. Notall
members of the team mayiew changes. This

is controlled by an access list, and thus may be as
restricted or open as your project requires.

A number of reiew schemes hae been obserd.
Two extremes are presented here:

- A single team member is responsible for
coordinating all reiews. Eachreview is
performed by a panel of four team members
in addition to the desloper of the change.
Only the r@iew coordinator after receving
the papenork from the reiew panel, may
pass or fail reviews.

- Any devdoper may rgiew any change; this
is done informally Aegs prevents a
developer from reiewing her own change,
to avoid an obvious conflict of interests.

4. This is the same algorithm as used by CVS-Update and
RCS-Merge.

Aegis

PeteMiller

Many other review styles are possibleub the one
best for your project will probablyafi between
these extremes.

Revievers knev seveal things about a change in
the being reviewed state, because of the
requirements for getting there.

« The change is known to build successfully.

- The change is known to V& tests and to
have passed them.

- The source files in the change are known to
be up-to-date with respect to the baseline.

This allows reiewers to concentrate on
completeness of the code, completeness of the
tests, and standards issues, etc.

If a change fails ngew, it is returned to théeing
developed state for further wrk by the original
developer The reviewer is not responsible for
fixing problems found by the revie

3.4 Awaiting Integration Once a change
passes mgew it is advanced to theawaiting
integration state. Thisstate is a queueOnly one
change at a time is integrated into the baseline,
even though all changes in this statevhao files

in common. This allows clear indications of
which change is atafilt, should the intgator
discover that there are problems. See Figure 2 for
a dagram of hev files flav through this model.

3.5 BeingIntegrated Not all members of
the team may integrate changes. This is
controlled by an access list, and thus may be as
open or restricted as your project requires.

To integrate a change with the baseline, an
integration directory is created by cgpg the
baseline, or more usually creating a logicalycop
using links. The change is then applied to this
integration directory.

The integration copis then built and testedThis

is to ensure that it & not just some quirk of the
developer’s environment that allowed the change
to get this &r? and also to hee dl files in the nev
baseline consistent with each other.

The intgrator may choose to run a represewati
subset of the regression test suite, in addition to
the tests which accompanied the change.

5. For example, a weird environmentsiable setting, or a
boguscc command in the ATH which alvays eits
success.

Page 4

baseline
developmen developmen
directory directory

integrator
integrate
pass

integration
directory

Figure 2 Flow of Files through the Model

In addition to rejecting a change because it fails to
build or test, an integrator may also act as a
reviewer; this is a good place to arch the
watchers, and monitor the quality of views.
Integrators may thus veto a changerethough it
builds and tests successfully.

If a change fails integration, the igtation
directory is remwed, and the change is returned
to the being developed state for further work by
the original deeloper The intgrator is not
responsible for fixing gnproblems found.

3.6 Completed Once a change uilds and
tests successfullyit may be adanced to the
completed state. Thdile histories are updated at
this point, and the file locks released@he old
baseline is remad, and the intgration directory
is renamed to be the baseline. Thedtgpment
directory is also remad.

Unlike earlier states, a change in this state cannot
be reversed. Ifyou subsequently wish to rene
the change, you will need to create another

change and repeat the whole process with all edits

Aegis

PeteMiller

in reverse.

A change consists of a description and a list of
files and ersions in this stateA full history of
state transitions has been kept, including who
performed them and when.

4. Quality Control

Quiality is addressed in a number afys. Asyou

can see from the abe description of hav Aegs
manages change control, the mandatory testing
and re@iewing are steps in this directiorexactly
what is tested or ndewed is up to you, but the
places exist in the process for them to be done.
They can be as elaborate or simple as your project
requires. Notethat there is more to sofase
quality than these twitems, and theare not the
only places where tests andviews can tak
place.

4.1 Doesit work? A major advantage of
Aegis is the ability to answer the question "Does
it work?". Thisquestion is asked from a number
of perspecties:

« The deeoper wants to knw "does this
change wrk?". Agis provides the answer
with tests for each changeDevelopers
have dways tested their code,ub Aegis
provides ergonomic advantages, vee
forgets to test something, and the tests are
preserved for future use.

« The integrator wnts to knw "does this
change break athing else?". Aegis
provides the answer with a constantly
growing regression test suite, and also
malkes the deeloper’s awvn tests aailable to
the integrator.

» The project leadeend management further
up the tree, want to kmo"does the project
work?". They want to be able to touch and
feel progress twards the target, and the
want some confidence that the project will
not cease to wrk at random (but usually
disastrous) times. Aegis provides the
answer here in the form of a baseline which
always works, and is alays available for
demonstrations.

The various mandatory tests andlidations are
configurable for each project (and in some cases,
for each change)You may use as mamor as ew

of the safeguards provided by die as you need
for each project.

Page 5

4.2 NoBack Door Another issue is whether
there is a "back door" into the process, so that a
developer who finds the process tedious cenich

it and just "fix" the baseline directhywith Aegis,
there is no way to circumvent the process.

Access to the baseline is read-only for the
development team, including the irgeator.
Access is protected by thuNIX group andumask
mechanisms. AUNIX group and umask is
associated with each project, andy aommands
Aegis eecutes will arrange to ka the
appropriate group and umask, to ensure that all
users in that group ke acess (een if the user
has a different default group).

All developer commands are run as thedeper,
and hence ha te deeloper’s permissions. All
integration commands are run as tipeoject
owner who is usually not the inggator (so the
integrator cart edit, even if she wants to). It is
only ever necessary to login as the projeetreer

to perform actions beyond Aegis’ scope, such as
recovering after a disk crash.

5. Manifest Control

Aegis remembers where all the source files are.
They are initially created in changes, and only
exist in the baseline after a successful gnédion.
The location of the baseline and alvdepment
directories are knen, and the names of all the
source files in them are known.

6. \ersion Control

As described ab®, Aegs del@aes the file
history maintenance to the package of your
choice. All Aegis requires is the ability to
determine the latesevsion number for each fik’
history at integrate pass, so that the random string
(it need not look anything lika rumber) may be
used later toract an earlier version, should it
be needed.

The version string for each source file in the
baseline and each wiopment directory is
known, so that the difference and merfcility
described abee an work.

In addition, a project version may be specified
when copying files from the baseline into a
change. Thusan earlier ersion of the project
may be recreated, in order to reproduceig, thor
example.

Aegis

PeteMiller

7. Build Control

The change control description mentioned that
build control is delgaed to the dependenc
maintenance tool (DMT) of your choice.

7.1 Capabilities The DMT needs to be able
to cope with the fundamental concept ofotw
directories. Thigs a "search path" forvery file,
no matter what the file is used for.

The baseline contains all the implicationsilog
from the source files, this typically means the
object files from compilations and the latk
executable. Itcould also include documentation
and manual entries formatted from appropriate
source files.

The deeopment liild may thus compile a
minimum of code, and link the rest from the
baseline, minimizing disk usage and compile time
across all deslopers.

There is a catch: the dependgnmaintenance
tool must be able to detect when an include file in
the deelopment directory logically welidates an
object file in the baseline, necessitating
compilation of a baseline source file, andvieg
the object file in the delopment directory for
linking.

re-

Experience has shown that thearious
makedepend programs do not work very well.
What is most needed is the ability to determine
the include files "on the fly". This implies the
ability to give DMT rules like

% o0: % c ‘includesof % c*

$(CO -c %ec

where includes-of is a program to be woked
when the rule is matched, rather than when it is
read (note the back quotes).

7.2 DependenciesThe DMT is expected to
know all project dependencies. This functionality
is completely delgated, and so Aegis kms
nothing about ag dependencies.

The configuration file for the DMT is a project
source file, and therefore is altered by the same
process.

Page 6

8. Directory Structure

Aegis attempts to dictate as little as possible about
the directory structure of the projects it
supervises. Theris one mandatory file, and one
mandatory directotyThe mandatory file contains
Aegis’ configuration information for the project,
the mandatory directory contains all tests for the
project. Theconfiguration file, and all tests, are

- Do not do ag automated testing. This may
be configured for a single change or for a
whole project. You 4ill get the supervision
aspects of Agis, but no regression test
suite.

The least suitable class of programs for
supervision by Aegis are stand-alone programs.
Operating systems and embedded systems are

treated as source files, and are subject to the samemembers of this classThe program in a hand-

change process.

The source directory tree of each project may be
as deep or as shalias equired.

The placement of project directories is completely
configurable. Eaclproject may be owned by a
unique user if desired, and Aegis can manage
mary projects simultaneously Security is
through theUNIX groups mechanism, so it can be
as open or restricted as required.

When a change is being\w#oped, it has itswn
development directory This derdlopment
directory is a subset of the baseline. Only those
source files which need to be edited are present in
the derelopment directory.

9. Applicability
There are some projects which are well suited to

supervision by Aegis, and there are others which
are not.

Ideally suited projects are programs whichetak

held calculatgrfor example, wuld be &tremely
difficult to test from a shell script. It is possible to
test this class of programs with the right
hardware, but it is usually impractical.

10. Summary

This paper has gén a \ery short oerview of
Aegis, and described a vie of its strengths.
Things to remember about Aegis include:

Aegis is designed to be a small piece in gdar
system, lile mary otherUNIX utilities.

Aegis is a project change supervisiirperforms
part of what is becoming known as sadte
configuration management (SCM). This yides
control for manifest, versions, building, changes
and quality.

Aegis is not a history tool, such as RCS. It is
layered abwe such a tool.

Aegis is not a dependepenaintenance tool, such
asmake(1). Itis layered abee such a tool. Any

set of input files, process them, and generate a set dependencies which cannot bepeessed in the

of output files. Test cases may be easily
generated, and actual output compared with
expected output.

Another class of programs Ve full-screen tgt
interfaces or GUIs and thus are not so well suited
to supervision by Ags. Becausetests are
Bourne shell scripts, only the functionality
accessible from the command line can be
automatically tested. In these cases there are
three options:

+ Change the program to optionally accept
fake input and to write screen dumps to
files, thus providing a testable case.

« Change the program to alloaccess to the
functionality from the command line, thus
providing a testable case. Note that this
cannot test the user interface.

Aegis

PeteMiller

rules file of the DMT cannot be expressed by
Aeqis.

Aegis is not a bug tracking system, it has no
mechanisms for trackingugs and telling you
which are fixed and which are notHowever,
there are notification hooks to liaise with such a
system.

Aegis does not dra Gantt charts, bubble charts,
flow charts, or ap other pretty pictureslt does
not itself generate gncode. Itis not a CASE
system, it is a component of a CASE system.

Aegis attempts to dictate as little as possible about
each project. It dictates very little directory
structure, and it does not dictate test content or
the review method. Reiews and tests in addition
to those required by Aegis may be performed.

Aegis is free. This means that it has aroellent
cost/benefit ratio, compared to commercial
products, een if it doesnt haveall their features.

Page 7

11. Availability
You can get Aegis by WWW from

URL: http://mller.enu.id.au/pmller/
File: aegis.4.25.tar. gz the full source
File: aegis.4.25.ps. gz the User Guide

Aegis is distriumted under the terms and
conditions of the GNU General Public License.
Aegis is Copright © 1991, 1992, 1993, 1994,
1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2012 Peter Miller

This paper is Copight © 1993 Australian
Geological Surgy Organisation. Apartfrom ary
fair dealings for the purposes of studgsearch,
criticism or review, as permitted under the
Australian Copyright ACT 1968, no part may be
reproduced by anprocess without prior written
permission. Cogright is the responsibility of the
Executve Director. Inquiries should be directed
to the Principal Information Officer.

12. Refeences

The following free software, and their
documentation, are referred to in this paper:

* Miller, P. A, "Aegis - A Project Change
Supervisor,"AUUG 93 Conference Papers,
1993, p. 169-178.

[1] RCS5.6
Copyright © 1982, 1988, 1989 by aMter k£
Tichy.
Copyright © 1990, 1991 by Paul Eggert.

[2] CVvS13
Copyright © 1986, 1988-1992 Free Sotre
Foundation, Inc.
Numerous authors, principally Brian
Berliner.

[3] GNU Make 365
Copyright © 1988-1993 Free Softwe
Foundation, Inc.
Numerous authors, principally Roland
McGrath.

All of these programs may be fetched by FTP
from your closest GNU arche ste. Within
Australia, you can find them archieau in the
/gnu directory.

Aegis PeteMiller

Page 8

