
Aegis is Only for Software,
Isn’t It?

Peter Miller
millerp@canb.auug.org.au

Aegis is a Software Configuration Management system, which provides a method for
managing concurrent development and peer review with strong auditability. These fea-
tures are useful to more environments than the development of software. Thispaper
presents two systems being managed with Aegis at AGSO: DNS and the Web.

Using Aegis to manage DNS provides a reliable way to add entries to the DNS tables,
check the tables, and generate the reverse maps. It is even generating some NIS+ tables.
The system is peer reviewed, so no “broken” changes are able to get into the system
tables. Thenet result is a more reliable service to the users.

Using Aegis to manage the AGSO Web (http://www.agso.gov.au/) models the production
of scientific papers. In the normal publication process an author writes a paper and it is
then peer reviewed, the reviewers may return it with comments or approve it to the pub-
lisher. The publisher in turn may accept it for publication or return it.A similar model is
available using Aegis when publishing Web pages; the publication analogy is deliberate
since the work is indeed available to the public. The “build” step which is so central to
producing software is used in the Web case to resolve server-side includes, to check the
HTML for obvious errors, and to generate the various indices. Some Aegis reports are
also used, such as the one from which the “What’s New” page (http://www.agso.gov.au/-
whatsnew/) is generated. The provision by Aegis of individual “sand pits” greatly facili-
tates concurrent development of Web pages and improves productivity. In general, staff
have been happy with the Web development model in use at AGSO.

1. Aegis at a Glance

The termConfiguration Managementwas coined
many decades ago in the engineering disciplines.
It refers to the process of managing all of the
components of an engineering design. In design-
ing a car, for example, it is important to know
which version of the shock absorbers goes with
which versions of the chassis and wheel arches.

A similar problems exists for the construction of
software, and so the term was borrowed by soft-
ware engineers to becomeSoftware Configuration
Management. This refers to keeping track of the
various source components of a software package,
and how to assemble them into a working pro-
gram.

There is a huge similarity between assembling a
software program, and assembling a web. Source
files are processed and stitched together to form
the final product, much the same way program

Copyright © 1996 Peter Miller

source files are compiled and linked together to
form the final software product.

Aegis is a software configuration management
system, and it provides controlled accesses to the
source files of a project.It can support concurrent
development, and enforces mandatory reviews.
As Aegis is described more completely elsewhere
[1, 2], this paper will not dwell too heavily on
how to use Aegis, but rather how Aegis is useful
in the two case studies below.

2. DNS Management

The first case study presented here is that of using
Aegis to manage Domain Name Service (DNS)
information. Thisis a relatively small system, it
is reasonably well known, and if you get it wrong
your network may cease to function until you get
it right again. DNSitself has been described else-
where [3, 4] and will not be described in depth
here.

Peter Miller Page 1



AUUG´96 Aegis is Only For Software, Isn´t It?

The design of the Unixnamed(8), the program
which serves the DNS protocol, is intriguing,
mostly because of the almost-but-not-quite redun-
dancy in most of the configurations files.This
revolves around the fact that DNS has bothfor-
ward maps which associate a domain name with
an IP address, andre versemaps which associate
an IP address with a domain name.Naturally, if
these maps are not carefully synchronized, a vari-
ety of problems may result.This is traditionally
solved usingmake(1) and some baroqueawk(1)
scripts. Themaintainer logs in asroot, edits the
forward map, runs make, and informs named that
it needs to re-read its input files, usually by run-
ning a shell script which sends a signal to the
server process.

But what do you do when there is more than one
authorized maintainer?How do they coordinate
their activities when they are in 3 different build-
ings? How do they make sure the configuration
files are OKbeforethey bring the whole network
to its knees?

None of these problems are particularly new or
interesting. They are well known to software
development teams the world over. At AGSO, we
are using Aegis to resolve them.

2.1. Concurrent Development

Aegis has the concept of abaselinewhich is the
known-good currently-working master source for
a project. Aegis partitions alterations to this base-
line into sets of files which must be altered simul-
taneously to preserve the currently-working-ness
of the baseline.These sets of files may be as
small as a single file, or as large as every source
file in the baseline.

These alterations to the baseline are known, uno-
riginally, as changes, and each change is given a
separate development directory. By dev eloping
each change in a separate directory, there is no
possibility than one maintainer can accidentally
blow away another’s work. At worst, if they hav e
a file in common, one will need to merge the
other’s work with his own. This merge is fully
supported by Aegis.

The other important feature of using separate
development directories is that “half finished”
changes are not mistaken for valid input, should
the DNS server be rebooted during the develop-
ment of the change. Until a change is completed
andhas been reviewed, the baseline remains unal-
tered.

This entire process is performed by users
logged in as themselves. Accessis controlled by
access control lists based on user names, no spe-
cial system user accounts are required.need for
users to login to a special account to work on web
pages.

2.2. Validation

When constructing software, the program is built
in some way. One traditional Unix approach is to
delegate remembering how to do this to a pro-
gram such asmake(1). While make(1) can be
used with Aegis, the author preferscook(1) as a
more capable and descriptive build tool.

The build step is used to translate the forward
maps into reverse maps.This is not done with
awk(1) for a few reasons

• The SRRF input format used bynamed(8)
makes for very hard to read awk scripts if
you are determined to use the full input lan-
guage.

• We use include files to describe our various
buildings and other internal network struc-
ture. This also reduces the number of
opportunities for conflicts between changes.

As a result, we have a suite of C programs (also
developed using Aegis, naturally) which perform
the various translations and filters we require.

A very important side-effect of these translations
is that they validate their input. In this we detect
duplicate host names, invalid host names, dupli-
cate IP addresses, invalid IP addresses, etc.When
we converted our DNS procedures to use DNS, a
number of problems were discovered which had
been in the system for years.

Yes, these problems could have been discovered
with the old root make system, but they were not
discovered until we decided to us a system specif-
ically designed to be maintained by many people,
and to double check everything before it went
“li ve” and inconvenienced staff.

2.3. Derived Data

We also use the DNS data to generate some of our
NIS+ tables. Obviously, the NIS+ hosts table
needs to be synchronized with the DNS tables,
and this translation is relatively easy.

We also invented an “ether” type, which we filter
out and don’t actually give to named(8), to record
Ethernet addresses.This information is used to
derive the NIS+ ethers table. This could have
been managed differently, but as it is intimately

Peter Miller Page 2



AUUG´96 Aegis is Only For Software, Isn´t It?

related to the IP address management, we decided
to do it here, for a sort of “one stop” network
shop.

Thehinfo records aregrep(1)ed to generate the
NIS+ netgroup table.This is used to minimize
changes to/etc/hosts.equiv, /etc/dfs/dfstab, etc.
As a new machine is added, it receives a formula
hinfo description, which results in it being
included in the appropriate net group, and thus the
appropriate network permissions.

The hinfo records are also filtered to generate
the NIS+ bootparamd map.When combined with
the hosts table and the ethers table, this is all that
is required to configure a workstation for the
Solaris Install Server.

2.4. Review

Aegis will not allow a change to finish develop-
ment until it builds cleanly. Thus, if there are any
errors found during the various filters performed
by the build step, a change may not end develop-
ment.

Once a change ends development it is not imme-
diately installed into the baseline. It enters a
“being reviewed” state.Developers are prevented
from reviewing their own work, as an obvious
conflict of interests. Some other authorized
review must do so. The access control lists for
developers and reviewers are separate, and it is up
to your individual preferences whether they over-
lap or not. Once a reviewer OKs the change, it is
then integrated.

2.5. Integration

The integration involves making a copy of the
baseline (usually with hard links, it is faster) and
applying the change to this copy. The build is
performed again on this copy - mostly as a quick
double check, though it does not in the Web case,
below.

The integrator can also serve as an editor, or a
second reviewer if necessary. It answers the
perennial “who will watch the watchers” ques-
tion.

Aegis’ notification facility, used at most transition
to send email or news articles, is also used at the
end of integration to notify DNS and NIS+ to re-
read the relevant files.

2.6. Observable Results

It was long suspected that there was a fairly high
rate of change in our DNS data, but we didn’t
track it too closely, we already had more than
enough to do.Aegis tracks this activity in a very
non-intrusive manner. At present, we are averag-
ing 3.5 DNS changes per week, a figure not previ-
ously available.

The other thing which has changed is that there
are no unexplained changes.You no longer hear
they cry “Who the smeg did that?” echoing down
the corridor. There is never the silent anonymous
untrackable duel between two administrators
undoing and redoing each others changes.

By adding Ethernet numbers, we can detect when
machines move between staff and between floors
and change names, meaning that we can detect
now-vacant IP addresses by the Ethernet address
duplicate.

The most important result is stability. More is
checked than ever before, and it is discovered ear-
lier than ever before. Onlychanges which pass
all our automated checks, and also pass the
scrutiny of a human DNS boffin, are inflicted on
users.

3. Web Management

The second case study presented is that of
AGSO’s Web. This is also managed using Aegis,
though this project has many, many more sources
files. Theenvironment presented by Aegis is the
same - though the terminology used is more
aimed at authors than system administrators.

The method of Web development implemented
using Aegis is presented as an analogue of the
publications of scientific papers.

Peter Miller Page 3



AUUG´96 Aegis is Only For Software, Isn´t It?

Author
writes web pages

Reviewer
performs peer review

Editor
performs editorial review

In particular, it is expected that much of the sci-
ence content of our web pages will be authored by
out scientists. The peer review is expected to be,
and should be, performed by the scientist’s sci-
ence peers.Everything else - layout, formatting,
copyright issues, structure, etc, are the editor’s
problem. Onlythe author may alter a change -
the peer reviewer and the editor only have the
power of veto. Thefile system permissions are
exploited to ensure that there is no “back door’ to
this process.Even the editor (integrator) does not
have write permissions to the baseline.All
changes to the baselinemust traverse the entire
change process.

3.1. Build and Validation

The build step in the Web project is very little dif-
ferent from the build step in the DNS project.We
use the build step to:

• Resolve server-side include files, so that the
files fetched by external clients are com-
plete, and the HTTP server can be as dumb
as possible.We use common headers and
footers in common include files to imple-
ment much of the look and feel of our web
pages.

• Perform SGML checking against the
HTML 2.0 DTD. The finds all of the overt
HTML errors, but it cannot check spelling
or style. We use sgmls(1) obtained from
the network, and the standardhtml.dtd
also obtained from the network.

It takes longer to perform this build than in the
DNS case, because there are more source files and
more include dependencies to check.

The build works out what to build from the source
files of the project.The cook(1) programs asks
Aegis for a list of files, and then generates a list of
output files from that. In this way, there is no
need to add a new file to a list in aMakefileof
some sort.

3.2. File Templates

To add a new page to the Web, a user initiates a
Web change and then creates a new file via Aegis.
The new file will be created according to a pre-
configured file template. This will give them the
common headers and footers automatically, all
that is required is to fill in the text in the middle.

So that the page may be accessed, it will also be
necessary to copy some other file, again via
Aegis, and embed an anchor to the new page in
the copied page.

Files are copied and created via Aegis so that
Aegis knows which files to transfer from your
working directory into the baseline. If you don’t
tell Aegis, they will not be built, and later they
will not reach the baseline.

3.3. Preview and Review

Once your Web pages build successfully, it is pos-
sible to see what the public will see - to preview
them. We do this by running a specialized web
server that “overlays” the files in your develop-
ment directory over those in the baseline.Essen-
tially, this is a simple search path. The special-
ized web server tell you a URL to open to preview
your changes, and it will exist until you interrupt
it, usually with Control-C.

Reviewers may use the same technique to look at
an author’s change, however reviewers are also
encouraged to look at the HTML itself.

Using this specialized web server, it can be estab-
lished exactly what the public will see when the
pages finally arrive in the Web baseline.All of
the Web pages are available in this way, as the
change’s pages are seamlessly integrated with the
baseline pages.In this way, it is only necessary to
copy the pages you actually need to edit.All
other pages are obtained from the baseline.This
often represents a large saving in working disk
storage.

We hav e a set of layout guidelines which are
available internally for our Web developers to
read. Reviewers (theoretically) review against
these guidelines, and developers are encouraged
to have a quick look at the guidelines before

Peter Miller Page 4



AUUG´96 Aegis is Only For Software, Isn´t It?

completing the development of their changes.

3.4. Integration

The integration stage is not particularly different
from the integration stage for DNS.However,
some of the more time consuming tasks, which
are not of great interest to developers are done at
this time: mostly generating or updating the vari-
ous indexes for our Web as required for the spe-
cific change.

3.5. Concurrent Development

Performing file copies via Aegis allows Aegis to
note the version of the file at the time it was
added to the change.This version information is
used later to detect file conflicts, and to merge file
contents.

The chances of having Web pages in common are
fairly low, howev er it happens fairly regularly.
The use of separate development directories
means that this can be ignore for as long as the
author wants to. When it is time to complete
development of a Web change, the versions of the
files are checked by Aegis. If any are out-of-date,
a 3-way merge may be performed to merge the
Web baseline updates with the edits in the change.

3.6. Results

The AGSO Web is intended to be a “publication
on demand” medium. As a result, any data the
public can see needs to be of publication quality
already. It is then only required for the client to
print interesting material one the client’s printer.
While the HTML formatting may leave a little to
be desired at present, we believe that the process
we employ is more than capable of delivering the
quality of content that we desire.

4. Summary

Many of the processes we perform on computers
involve manipulating and assembling files in
some way, many can be managed using SCM
techniques. Even where significant manipulation
(e.g. compiling software) is not required, auto-
mated input validation helps reduce the number of
avoidable errors (much as compilers validate
against input language).

The other advantage conferred by Aegis is that
privileged operations are recorded, and are avail-
able for auditing purposes.The privilege is con-
trolled by access control lists, and requires active
conspiracy by more than one person to subvert.
Even then, the audit record is inaccessible.By

using Aegis’ notification facilities, it is even pos-
sible for highly privileged system tables to be
updated, and yetroot passwords need not be dis-
closed.

The use of Aegis to assist in the management and
availability of critical system services has been
very successful, and will be used again.

The use of Aegis to ensure that our Web is of high
quality has been equally successful, and is a
model we would happily recommend.

5. References

• Miller, P. A., “Aegis Is Only For Software,
Isn’t It?,” AUUG ’96 ACT Summer Con-
ference Papers, 1996.

[1] Miller , P. A., “Aegis - A Project Change
Supervisor,” AUUG ’93 Conference Papers,
1993, p. 169-178.

[2] Miller , P. A., Aegis User Guidehttp:-
//www.canb.auug.org.au/-
˜millerp/aegis.html ,

[3] Mockapetris,P., “Domain Names - Con-
cepts and Facilities”, STD 13, RFC 1034,
USC/Information Sciences Institute,
November 1987.

[4] Mockapetris,P., “Domain Names - Imple-
mentation and Specification”, STD 13, RFC
1035, USC/Information Sciences Institute,
November 1987.

Peter Miller Page 5



AUUG´96 Aegis is Only For Software, Isn´t It?

Aegis is Only for
Software,Isn’t It?

Peter Miller
millerp@canb.auug.org.au

• Aegis at a Glance
• Managing DNS with Aegis
• Managing WWW with

Aegis

Peter Miller Page 6



AUUG´96 Aegis is Only For Software, Isn´t It?

Aegis at a Glance

• Software Configuration
Management

Manifest control, Version control, Build
control, Change control, Quality control.

• Software development
analogue

Source
Files

Chew
on them

Finished
Product

•
Aegis provides change
process and change
environment

Peter Miller Page 7



AUUG´96 Aegis is Only For Software, Isn´t It?

The Process in Too
Much Detail

new
change

aw aiting
development

develop
begin

being
developed

develop
end

being
reviewed

review
pass

aw aiting
integration

integrate
begin

being
integrated

integrate
pass

completed

new
change
undo

develop
begin
undo

develop
end
undo

develop
end
undo

integrate
begin
undo

review
fail

review
pass

undo

integrate
fail

Author

Reviewer

Editor

Peter Miller Page 8



AUUG´96 Aegis is Only For Software, Isn´t It?

Advantages of the
Process

• Access control lists
• Insulated development

areas
• "Backing Out" is Easy
• All state transitions

recorded
• State transition notification

Peter Miller Page 9



AUUG´96 Aegis is Only For Software, Isn´t It?

Managing DNS with
Aegis

• Users logged in as
themselves (ACL)

• No root access required
• Fully audited and

reportable
• Notified of all changes
• Coordinates multiple

system admininstrators

Peter Miller Page 10



AUUG´96 Aegis is Only For Software, Isn´t It?

The DNS Build Step

Forward
map files

Chew
on them

Reverse
map files/etc/hosts /etc/netgroup

Peter Miller Page 11



AUUG´96 Aegis is Only For Software, Isn´t It?

The DNS Integration
Step

baseline

development
directory

integrator

integrate
begin

integration
directory

integrate
pass

development
directory

• Conflicts
detected
and
managed

• This is
when
history is
updated

• No root
access
required
for named
notification

Peter Miller Page 12



AUUG´96 Aegis is Only For Software, Isn´t It?

Managing WWW with
Aegis

• Users logged in as
themselves (ACL)

• Fully audited and
reportable

• Notified of all changes
• Coordinates multiple

authors
• Peer review is well

understood

Peter Miller Page 13



AUUG´96 Aegis is Only For Software, Isn´t It?

The WWW Build Step

master/ chew
on them export/

Development
Directory

• Server-side includes are
resolved

• Include dependencies
automatic

• HTML is checked against
DTD

• Reports generated, e.g.
What’s New

• SQR compiled,etc, etc

Peter Miller Page 14



AUUG´96 Aegis is Only For Software, Isn´t It?

Directory Stacking

Baseline
TOC.html
ch1.html

Development Dir.
TOC.html

ch2.html

Combined View
TOC.html
ch1.html
ch2.html

• Only files being edited or
created are in development
directory.

• Build tool must be able to
cope with directory stack.

• "Test Server" must be able
to stack, too, so can
preview.

Peter Miller Page 15



AUUG´96 Aegis is Only For Software, Isn´t It?

The WWW Integration
Step

• Integration build also
constructs the indexes and
other files not normally
interesting to developers.

• Same picture as before,
integration directory
renamed to be the baseline.

• Conflicts are detected and
managed.

• This is when history is
updated.

• Server is sufficiently lightly
loaded to run frominetd, so
no notification required.

Peter Miller Page 16



AUUG´96 Aegis is Only For Software, Isn´t It?

Aegis is Only for
Software,Not!

• Access control lists, no
root required

• Audit trail, statistics and
reports

• Quality control for
Publication on Demand

• Quality control for critical
systems

Peter Miller Page 17




