
Testing? What testing?

Peter Miller

Platypus Technology

ABSTRACT

This paper presents a simplistic yet powerful model of what a test is. When you intend to
test your software, you have to design your software to be testable. This paper will
examine attributes of software implied by this model.Some examples of automated
testing will be given.

1. What is a test?

The core thesis of this paper is the idea1 that a test
consists of three things: a system in a defined
state, a defined transaction, and a confirmation
that the system arrives in a defined state.

initial
state transaction

destination
state

This is an overly simplistic statement, but remains
remarkable useful.The "system" under test could
be a simple object, a collection of interrelated
objects, a whole application, or a distributed
multi-layer client-server system.Equally, the
transaction could be a single byte of input, a
single edge of a state transition diagram, or a
series of transactions lumped together as a single
ev ent being considered.

Confirming that the system under test has arrived
in a particular state can be done in may ways.
Some states are clearly visable, sometimes they
are available but not useful, and some internal
states are not for user consumption and are much
harder to access and therefore harder to confirm.

1. There is a growing body of knowledge called
"Transaction Based testing" or sometimes "Transaction
Based Verification".

initial
state

destination
state

oops

Please note that this is asimplistic definition of a
test. Itdoes not cover all forms of testing (such as
tests of usability, maintainability, portability,
robustness and so on which make up the other
zillion software sub-characteristics listed in ISO
9126) and it is no substitute for a well thought out
test plan. It does, however, provide some
language for talking about functional testing.

2. Manual testing is no testing

Humans are really bad at boring, repetitive tasks.
If your test plan is based on the idea that your
staff will f aithfully execute a long list of printed
instructions, at least once per release, then your
testing is probably not effective.

For example, many manual test plans contain long
sequences of things the operator is required to do,
often with information on the screen to be
confirmed as correct. This is all very well for
successful tests, but what happens when one fails?
Usually, these test scripts cover large numbers of
behaviors. Thereis thus a motivation to complete
the rest of the script, rather than stop, and have to
do the start of the script again when the software

Testing? Whattesting? PeterMiller Page 1



- 2 -

has been fixed.

There are two themes here: (a) testers have to
look "productive" or they might not get paid, and
(b) redoing the first bit again and again is boring.

Let’s look at that definition again, rephrasing what
our manual test scripts are doing."Usually, these
test scripts start from a defined state, and define a
transaction and a confirmations of the destination
state, then the next transaction and confirmation,
ad nauseum." Now, what happens when one of
those confirmations fails? Well, we know it’s in
the wrong state, so going on to execute the rest of
the script, we are no longer fulfilling the initial
portion of our three-part definition: we aren’t in
the defined state that the transaction is to be
applied to. After the first failure, the rest of the
results areno information.

oops

For effective testing, then, you need something
that is very good at accurately repeating the same
script over and over again, and reporting very
promptly when something goes wrong.
Computers are very good at boring, repetitious
tasks. They don’t complain when you ask them to
run the same stupid scripts tens or even thousands
of times. And if the script breaks, they stop. For
effective testing, then, you need automated
testing. Letthe humanswrite the tests, and let the
computersrun the tests.

3. Software Attributes

Automated testing requires the ability to
automatically get the system under test into a
defined state, the ability to automatically apply
one or more transaction, and the ability to

automatically confirm the current state (either
read-and-compare, or write-and-diff, usually).

Some things are easy to test, e.g.
cat > test.in
cat > test.sed
cat > expected-output
sed-clone -f test.sed test.in \

> test.out
diff expected-output test.out

But some things require some specific changes to
get the three properties.E.g. a virtual machine
simulator needs the ability to set registers and
stack,etc, and later to dump them do they can be
confirmed. Thismay be observable e.g. as some
interesting opcodes only present in the simulator,
and not the real machine, maybe to get the
simulator to exit with a success/fail indicator.

3.1 Initial State

The system under test needs a way to be placed in
a well defined initial state.This is something that
most programs are reasonably good at.Word
processors can load a file, image processing
systems can load an image, databases can be
created and populated with test sets,etc.

It was mentioned above that transactions can
actually be a series of transactions.Sometimes,
getting the system under test into a defined state
requires starting from the default state and
applying a series of known-to-work transactions.
Provided that you canget the system under test
into a defined state automatically, it can be tested
automatically.

3.2 Transactions

Automating transactions can often be the hardest
part of automated testing.Usually, this means
automating the simulation of input.This could be
user input, or a network connection, or a hardware
simulation for an embedded application.

3.2.1 Command Line

The design of UNIX makes the testing of
command line programs relatively simple,
because you can redirect input from a file.This
means that you don’t actually need to change your
software (or not much, anyway).

3.2.2 Full Screen

Full-screen programs are often similar, with input
again directed from a file, although you may need
to make it tolerant of non-tty input possibly under
the control of a command line option.The

Testing? Whattesting? PeterMiller Page 2



- 3 -

trickier cases can be handled withexpect.

3.2.3 GUI

On the other hand GUI interfaces are harder.
There are some utilities, such asTkReplay which
help. Butthey lead us to looking at the problem
differently: where can we inject the input?
We can inject it into the X server (or have a fake
X server which exists solely to provide test input).
We can proxy the X server, and inject the input
via the proxy.
We can inject it into the event loop of our
application. This,of course, requires changing
the system under test.
We can have alternate input classes, a "real" one
and an "automated" one.This, of course, means
that the "real" input class doesn’t get tested, but
the rest of the system does, and that may be
enough.

3.2.4 Client Server

Most of the techniques useful for X programs
work for client server systems as well.Fake
clients, fake servers, proxies, alternative input
classes,etc.

3.2.5 Observation

In order to test the system, some aspect of it was
changed. Auxiliarytest support, more tolerant
input, multiple input sources.

3.3 Verify State

Some programs, such as thesed example given
above, are relatively easy to test.Many programs
store a significant amount of state when you save
to a file, and this may be compared withdiff(1) or
cmp(1). Other systems, however, are more
challenging.

3.3.1 Full Screen

Many curses(3) programs need a special
command to dump the screen into a text file for
comparison usingdiff(1). It is also possible to use
expect in many cases.

3.3.2 GUI

Many of the input solutions also work for output,
but you will probably need special commands or
options to get screen dumps at strategic moments,
for comparison.

Wholesale capture and comparison of the output
stream is problematic, usually because of
gratuitous differences not relevant to the test.

3.3.3 Client Server

You can use bogus clients, bogus servers, or
clever proxies.

3.3.4 Observation

In order to test the system, some aspect of it was
changed. Auxiliarytest support, captured output,
multiple output destinations.

4. Discussion

There are some things which arise from
consideration of these ideas.

4.1 No Result

In coming up with a testing regime, it is necessary
to remember that tests do not simplypass or fail.

This is further complicated by the inverted sense
of some tests.For example, your development
process may require that a bug fix be
accompanied by a test whichfails on the unfixed
system, andpasses on the fixed system.

Consider the issues in achieving a necessary
initial state by applying transactions to an initial
state. What happens when one of these
transactions, which are not the transaction under
test,fail? In such a case it can’t fail, because the
bug fix case will give a falsepositive, but equally
it can’t succeed because this renders the test
meaningless.

The solution is to have a third result, often called
no result, which when negated still meansno
result.

Similar problems can occur with the transaction
and verification stages of the test.

4.2 Negative Testing

Some other examples of negative testing will be
given (i.e. didn’t arrive in the right state, or invalid
transactions resulting in an invalid state change).

4.3 Watch Me

A useful facility for creating tests is a "watch me"
mode. Thisis a mode or tool or whatnot that
allows the system to record inputs and output for
replay and confirmation (respectively) at a later
time. While this is not one of the necessary
attributes, it is often a useful side effect.

4.4 Assert

This simple model of testing gives a different spin
on the humbleassert statement. Theuse of

Testing? Whattesting? PeterMiller Page 3



- 4 -

assert can be thought of as verifying that the
system is in a particular state, or that the
transaction (input) is valid. Thisis not the kinf of
artifact youwant to see in production code; it is
usually compiled out of production code.

4.5 Trace on Request

Another thing which is often compiled out of
production code is a variety of tracing macros,
which allow you to see the state of various
portions of the system as they are executed. You
sometimes see this in production systems, whene
there is little performance impact; it is extremely
useful feature for tech support, as well as testing.

5. Testing? What testing?

I once worked on an image processing system for
which the company had partial source, and the
inner workings where supplied as a library from
the vendor. One of the transforms had some
trouble, and I fixed it, but then I wondered how I
should test it. How many of us can confirm
visually that a 2D Walsh-Hadamard transform has
worked correctly? While the destination state was
visible on the screen, giving humans 2 side-by-
side pictures (a "does it look like this" manual
test) you will almost certainly get a false positive.
E.g. those "find 10 differences" cartoon pictures
on the funnies section of the newspaper. If
humans are so bad at spottinggross differences,
how can we expect them to find one pixel
different in a million? So, I looked for the tool to
compare two images and tell me how many pixels
were different. There wasn’t one. How did the
vendor test their product?

If you have testability as a requirement of your
software, you will write different software than if
testability was not a requirement.

Do all the tools we use every day have these three
properties: Can their initial state be loaded
automatically? Cantheir transactions be applied
automatically? Cantheir destination state be
confirmed automatically? If any one of these is
missing (but usually the last one), what gives us
any confidence that they were tested at all?

Testing? Whattesting? PeterMiller Page 4


